
Polyadic Regression and its Application to Chemogenomics

Ioakeim Perros∗† Fei Wang‡ Ping Zhang§ Peter Walker¶ Richard Vuduc∗

Jyotishman Pathak‡ Jimeng Sun∗

Abstract

We study the problem of Polyadic Prediction, where the

input consists of an ordered tuple of objects, and the goal is

to predict a measurement associated with them. Many tasks

can be naturally framed as Polyadic Prediction problems.

In drug discovery, for instance, it is important to estimate

the treatment effect of a drug on various tissue-specific

diseases, as it is expressed over the available genes. Thus,

we essentially predict the expression value measurements

for several (drug, gene, tissue) triads. To tackle Polyadic

Prediction problems, we propose a general framework, called

Polyadic Regression, predicting measurements associated

with multiple objects. Our framework is inductive, in the

sense of enabling predictions for new objects, unseen during

training. Our model is expressive, exploring high-order,

polyadic interactions in an efficient manner. An alternating

Proximal Gradient Descent procedure is proposed to fit

our model. We perform an extensive evaluation using

real-world chemogenomics data, where we illustrate the

superior performance of Polyadic Regression over the prior

art. Our method achieves an increase of 0.06 and 0.1 in

Spearman correlation between the predicted and the actual

measurement vectors, for predicting missing polyadic data

and predicting polyadic data for new drugs, respectively.

Keywords: polyadic prediction, tensors, chemogenomics

1 Introduction

Dyadic data are measurements on dyads, i.e., ordered
pairs, where each element of a pair originates from a
finite set (i.e., data domain) of objects [13]. Typically,
those data are represented in a matrix, where a mea-
surement for a pair (i, j) represents some form of rela-
tionship between the objects i and j (e.g., user i and
movie j are two objects of user and movie data do-
mains, and the corresponding rating reflects a certain
relationship between the two objects). We generalize
the notion of dyadic data to describe measurements as-

∗Georgia Institute of Technology
†The work was partially conducted during an internship at

Weill Cornell Medicine.
‡Weill Cornell Medicine
§IBM T.J. Watson Research Center
¶Naval Medical Research Center

Drugs

Drug Features

Tissues

x1
i1

x2
i2

i3

yi1,i2,i3

Genes

Genes

Figure 1: Example use case of Polyadic Prediction. We predict a
measurement (expression value) associated with drug i1, gene i2 and
tissue i3, indicating whether the drug i1 is effective in treating tissue
i3, w.r.t. gene i2. Each drug is described by features capturing its
chemical structure, and each gene is described by features reflecting
its similarity with other genes.

sociated with multiple objects (not only pairs), and call
the corresponding data polyadic.

In this paper, we study the problem of Polyadic
Prediction, that is, predicting polyadic data. This prob-
lem covers many important use cases. For instance, in
drug discovery, we are interested in the treatment effi-
cacy of drugs on various types of tissue-specific diseases
(e.g., different types of cancer), as this is measured by
the expression regarding all the available genes. While
thousands of gene expression profiles (i.e., expression
values for accessible genes) are available, substantial
gaps remain in the combinatorial space across drugs and
tissues. The reason for that is mainly the cost associ-
ated with producing expression values. An accurate pre-
diction of unknown drug-gene-tissue measurements can
empower a better understanding of drug mechanisms, a
more precise identification of drug targets (i.e., specific
proteins), as well as finding new uses for existing drugs
(known as drug repositioning) [23].

We can naturally frame the challenge above as a
Polyadic Prediction problem: our data domains corre-
spond to the sets of objects: drugs, genes, and tissues.
Given the observed measurements for triads involving a
specific object from each data domain, we are interested
in predicting unseen triadic data, i.e., unseen measure-
ments for (drug x, gene y, tissue z) triads.

Another notable challenge is to provide accurate
predictions for entirely new objects from some data
domains, which are unseen during the training phase
(cold-start problem [29]). For example, instead of
directly conducting many expensive lab experiments



measuring the expression for a new drug, we could try
to estimate its treatment effect first computationally.
Then, we could focus on a small subset of targeted drug
trials and cut down the corresponding costs.

To enable predictions for new objects, we need some
form of external knowledge for their data domain. We
illustrate this use case in Figure 1, where we predict
the measurement yi1,i2,i3 involving drug i1, gene i2 and
tissue i3. We assume that feature vectors are available
for the drug data domain (e.g., x1

i1
is the feature vector

for drug i1). Thus, we try to provide a prediction for
yi1,i2,i3 , even if the drug i1 was not part of any observed
measurement during training. In Figure 1, this holds
accordingly for the genes’ data domain.

Finally, in target applications involving polyadic
data, a standard assumption is that significant inter-
actions exist between objects across the data domains.
For instance, we assume that the treatment effect of
each drug is varying for different gene-tissue combina-
tions. Regarding the example in Figure 1, this prop-
erty is mathematically reflected through the interac-
tions between drug with gene features and tissue ob-
jects. Thus, it is imperative to efficiently integrate those
inter-domain interactions, which can be high-order for
general polyadic data.

Dyadic Prediction has been studied in recent lit-
erature (e.g., [17, 15, 22], also mentioned as bilinear
prediction or pair-input/pairwise learning). Still, those
works limit their endeavors to dyadic data. Instead,
we propose a new framework, which we call Polyadic
Regression, to address the challenges introduced above.
Our main contributions are as follows

• We propose a general Polyadic Prediction frame-
work, predicting measurements associated with mul-
tiple objects. The fitting algorithm adapts to
various tasks (continuous/discrete) and constraints
(e.g., sparse solutions via `1 norm).

• Our framework is inductive 1: it can incorporate
external knowledge to enable predictions for new
objects which have not been encountered during
training, tackling the so-called cold-start problem.

• Our model is expressive to fit the needs of Polyadic
Prediction: it explores all the high-order interactions
across different data domains. Its factorized version
is designed to reduce its complexity and prevent
overfitting.

We apply the proposed framework to problems in
chemogenomics (i.e., chemical genomics). This field is
facing many challenges that can be naturally framed

1Our distinction between the inductive and transductive set-
tings follows the one provided in [15, 22].

as Polyadic Prediction problems, such as drug-induced,
cell-specific gene expression prediction and drug-protein
interaction prediction of various types [30]. Thus,
we conduct an extensive evaluation on both synthetic
and real, publicly-available chemogenomics data. The
synthetic data experiment establishes the recovery of
relevant features, in the presence of interactions. The
real data case study on drug-induced, cell-specific gene
expression prediction showcases the superior accuracy
of Polyadic Regression as compared to the prior art
in both of our target use cases. In particular, our
approach improves the correlation (standard metric
in gene expression analysis [1]) between the predicted
and the actual measurement vectors by 0.06 and 0.1,
in estimating missing polyadic data and predicting
polyadic data involving new drugs, respectively.

2 Background

Tensors are high-order generalizations of matrices. The
order of a tensor denotes the number of its modes
(e.g., matrices are 2-order tensors). A fiber is a vector
extracted from a tensor by fixing all modes but one.
Considering a d-order tensor S ∈ RI , where I := I1 ×
· · ·×Id, the index set of each individual mode µ is Iµ :=
{1, . . . , nµ}, µ ∈ {1, . . . , d}. Matricization, also called
reshaping or unfolding, logically reorganizes tensors into
other forms without changing the values themselves.
The index set without mode-µ is I(µ) := I1 × · · · ×
Iµ−1× Iµ+1× · · · × Id. Then, the µ-mode matricization
is a mapping from a tensor to a matrix: S(µ) : RI →
RIµ×I(µ) . As a result, the mode-µ fibers of the tensor
become columns of a matrix. Given Uµ ∈ RJµ×Iµ , the
µ-mode multiplication (or µ-mode product) is defined
by S ×µ Uµ and its matricized version is UµS(µ) ∈
RJµ×I(µ) . Given matrices Uv ∈ RJv×Iv , v = 1, . . . , d,
we can generalize this operation for all the tensor
modes via the multi-linear multiplication, denoted as:
S ×1 U1 ×2 U2 · · · ×d Ud ∈ RJ1×···×Jd [19].

3 Problem & Model Formulation

First, we formally introduce the Polyadic Prediction
problem and our proposed model in its most general
form. Next, we extend this model to cases when prior
knowledge for certain data domains is not available.
Then, we present a more efficient, factorized version of
it which can easily handle high-order input (≥ 3-order).

3.1 Problem Definition Suppose our dataset
consists of N samples of the following form:
{(i1, i2, . . . , iK) , yi1,i2,...,iK}, where yi1,i2,...,iK is
an observed measurement involving the K ob-
jects i1, i2, . . . , iK . We further assume that
ik ∈ {1, 2, . . . , nk}, 1 ≤ k ≤ K, that is, the object
ik takes values from a finite set of objects with car-



dinality nk. We call this set the k-th data domain,
since it contains objects indexed in the k-th position of
the ordered tuple (i1, i2, . . . , iK). The goal of Polyadic
Prediction is to learn a function to predict the value
of unseen measurements yi1,i2,...,iK , given the values of
the observed ones.

First, in Section 3.2, we assume that external
knowledge is available for all K data domains. In that
case, each object ik is described by a feature vector
xkik ∈ Rdk , where the superscript refers to the k-th
data domain and dk is the size of its feature vectors.
In Section 3.3, we relax this assumption.

3.2 Core Model Our core regression model is

f(x1
i1 ,x

2
i2 , · · · ,x

K
iK )

= b+

K∑
k=1

(wk)>xkik︸ ︷︷ ︸
linear terms

+
∑
uv

(xuiu)>Suvxviv︸ ︷︷ ︸
dyadic interactions

+
∑
uvr

Suvr ×1 xuiu ×2 xviv ×3 xrir︸ ︷︷ ︸
triadic interactions

+ · · ·

+ S ×1 x1
i1 ×2 x2

i2 · · · ×K xKiK︸ ︷︷ ︸
general polyadic interactions

(3.1)

where b is a scalar offset, wk ∈ Rdk is the vector
capturing the linear feature effects of each k-th data
domain, Suv ∈ Rdu×dv is the matrix capturing dyadic
feature interaction effects across the u, v data domains,
S ∈ Rd1×d2×···×dK is a tensor capturing the K-way
feature interaction effects across all the data domains.
Our core model is expressive enough to capture all
the dyadic, triadic, and in general polyadic interactions
emerging across features of various data domains.

We assume the matrices/tensors capturing interac-
tion effects are order-independent w.r.t. the data do-
mains, i.e., Suvij = Svuji , Suvrijk = Survikj = Svurjik = Svrujki =
Sruvkij = Srvukji and so on for the higher-order terms. That
is, we model the interactions of each group of data do-
mains with a single matrix/tensor, ignoring the rest pos-
sible data domain permutations.

3.3 Partial Induction The model in Equation (3.1)
implies that we have external knowledge available for
all the data domains. We call this setting complete in-
duction. However, this setting may not hold in practice.
For example, we may have drug and gene features avail-
able, but no external information describing each one of
the tissues. This setting is henceforth referred as partial
induction.

First, consider a dyadic data example. In complete
induction, the measurement for a dyad (i1, i2) is given
by

f(x1
i1 ,x

2
i2) = b+

(
w1)> x1

i1 +
(
w2)> x2

i2 +
(
x1
i1

)>
S12x2

i2

We now assume that external knowledge is only avail-
able for the 1st data domain. In this case, we can predict
a measurement associated with any object belonging to
the 1st data domain (either it is included in the train-
ing set or not) and any (encountered during training)
object belonging to the 2nd data domain. One typical
analogue for this case is multi-label learning [36], where
we have features describing the objects of the 1st, and
a set of labels as the objects of the 2nd data domain.
We follow the idea proposed in [9] and assume there are
shared and individual components in each label predic-
tor. More concretely, the possibility of assigning the
label i2 to object i1 can be defined as

fi2(x1
i1) = b+ (w1)>x1

i1 + (x1
i1)>s12

i2

where w1 is shared across all label predictors, and
s12
i2

is distinct for each label predictor. If we define

S12 = [s12
1 , s

12
2 , · · · , s12

n2
] ∈ Rd1×n2 , then we can re-write

fi2(x1
i1

) as

fi2(x1
i1) = b+

(
w1)> x1

i1 +
(
x1
i1

)>
S12e2

i2

where e2
i2
∈ Rn2 is a vector with only the i2-the

element being 1, all other elements are zeros (one-hot
encoding) and n2 is the cardinality of the 2nd data
domain (i.e., number of distinct labels).

We generalize the idea above for the Polyadic
Regression model as follows. Let K = {1, 2, · · · ,K} =
KU

⋃
KF be the set of data domains. KU is the set

of data domains without external knowledge, KF is
the set of data domains with features describing their
corresponding objects. In order to adapt Equation 3.1
to the partial induction setting, we define x̄kik as either
the feature vector of object ik from the k-th data
domain, when k ∈ KF , or the one-hot encoding of size
nk for the ik object, when k ∈ KU , i.e.,

x̄kik =

{
xkik ∈ Rdk , if k ∈ KF
ekik ∈ Rnk , if k ∈ KU

We also use w̄k to either denote the linear feature effects
of the k-th data domain when k ∈ KF , or a zero vector
which eliminates those effects when features are not
available (when k ∈ KU ), i.e.,

w̄k =

{
wk ∈ Rdk , if k ∈ KF
0nk ∈ Rnk , if k ∈ KU

Then, the model takes the form

f(x̄1
i1 , x̄

2
i2 , · · · , x̄

K
iK )

= b+

K∑
k=1

(w̄k)>x̄kik +
∑
uv

(x̄uiu)>S̄uvx̄viv

+
∑
uvr

S̄uvr ×1 x̄uiu ×2 x̄viv ×3 x̄rir + · · ·

+ S̄ ×1 x̄1
i1 ×2 x̄2

i2 · · · ×K x̄KiK(3.2)



If we define d̄k as

d̄k =

{
dk, if k ∈ KF
nk, if k ∈ KU

then S̄uv ∈ Rd̄u×d̄v , S̄uvr ∈ Rd̄u×d̄v×d̄r , S̄ ∈ R
∏
k d̄k .

3.4 Factorizing Polyadic Interactions Below, we
first assume a complete induction setting, and then
extend the discussion for the partial induction one.
The core model presented in Equation 3.1 enjoys high
expressive power in capturing all high-order interactions
across different data domains. However, this approach
suffers from high model complexity (O(dK) for K data
domains and d features per domain), which apart from
efficiency issues, may result in a poor generalization
performance.

As the pioneering work on Factorization Ma-
chines [27] suggested, it is reasonable to assume that
feature interactions are not independent, and patterns
are emerging among them. Those patterns imply a low-
rank structure of the corresponding matrix/tensor re-
flecting interactions. To incorporate such a structure,
one could augment the objective with a rank-minimizing
constraint (e.g., trace norm minimization [16]). Still,
this approach faces a huge model size problem for high-
order interactions and is not feasible for our model.

Instead, we explicitly replace the parameters cap-
turing interaction effects with their low-rank counter-
parts, i.e., products of sets of low-rank matrices or ten-
sors. Moreover, we take the idea of shared patterns
among features [27] a step further: we consider that
shared structure also exists among interactions of dif-
ferent orders, so that, for instance, the low-rank ap-
proximation of Suv has common terms with the one of
Suvr. We mathematically translate this assumption to
having a basis matrix Fk ∈ Rdk×m capturing the low-
rank structure of features for each k-th data domain. In
that case, we would approximate Suv as

(3.3) Suv ≈ Fu(Fv)> =

m∑
j=1

Fuj (Fvj )>

where Fuj is the j-th column of Fu. The formulation
above implies that each dyadic effect (entries of Suv)
is a result from aggregating the interactions (outer
products) among the m feature groups defined by the
columns of Fu,Fv. It is equivalent to the bilinear model
proposed in [22].

However, a pure generalization of Equation (3.3)
for our model is restrictive. It would imply that the
interactions between feature groups share the same
contribution (i.e., weighting factor) for various data
domain pairs or different orders. For a triadic data
example, the weight of the interaction between Fu1 and
Fv1 towards Suv is restrained to be the same as the one

between Fu1 and Fr1 towards Sur. Another restrictive
assumption is that the subspaces defined by all the basis
matrices Fk share the same dimension (m).

To tackle the above issues, we incorporate a scalar
weight for each feature group interaction, capturing
its significance towards the specific pair, triplet or
higher combination of feature groups considered. We
also permit a different dimension for the subspace
corresponding to each basis matrix. Thus, Relation 3.3
is transformed to

(3.4) Suv ≈ FuCuv(Fv)> =

mu∑
j=1

mv∑
k=1

Cuv
jkF

u
j (Fvk)>

so that each dyadic interaction matrix Suv is approxi-
mated by a tri-factorization [5]. For higher-order terms,
we adopt the multi-way analogue of tri-factorization,
which is the Tucker decomposition [31]:

Suvr ≈ Cuvr ×u Fu ×v Fv ×r Fr

...

S ≈ C ×1 F1 ×2 F2 · · · ×K FK

where Cuvr ∈ Rmu×mv×mr , C ∈ Rm1×m2×···×mK are
low-rank core tensors, and Fk ∈ Rdk×mk with mk � dk.

The discussion above implies a complete induction
setting. Consider now that we have no external knowl-
edge for the u-th data domain. In that case, we no
longer need to learn a low-rank representation of fea-
tures Fu. However, it is still useful to learn how the
objects from the u-th data domain interact with fea-
tures/objects from other domains. To model this be-
havior, we fix Fu to be an identity matrix Iu ∈ Rnu×nu
and Relation (3.4) becomes

S̄uv ≈ C̄uv(Fv)>

where S̄uv ∈ Rnu×dv , C̄uv ∈ Rnu×mv . This is trivially
extended for higher-order terms.

4 Algorithm

4.1 Objective Formulation For simplicity, we as-
sume a complete induction setting and for notational
convenience, we use {Xi, yi}Ni=1 to represent the i-th
data sample, where Xi = (x1

i1
,x2

i2
, · · · ,xKiK ) and yi is

the ground truth measurement of the objects involved
in Xi. We define our objective function as the sum of
a term minimizing the desired loss and another one in-
tended to regularize the parameters. This objective can
be summarized as
(4.5)

L =
1

N

∑
i

`(f(Xi), yi)︸ ︷︷ ︸
J (u)

+λΩ({wk}Kk=1, {Suv}uv, · · · ,S)︸ ︷︷ ︸
R(u)

where `(f(Xi), yi) is the regression loss of function f ,
Ω is an aggregation of the regularizations imposed on
the model parameters and N is the number of training
samples.



4.2 Objective minimization The most straightfor-
ward choice of a method minimizing the objective in
Equation (4.5) would be that of an alternating Gradi-
ent Descent (GD). Such a choice would suffice in cases
when the regularization function is smooth, such as the
squared `2-norm.

However, this choice falls short for nonsmooth reg-
ularizers [3], such as the `1-norm which is the standard
method to induce sparsity in the solution. In those
cases, we have to handle the regularizer as a distinct
entity, which can possibly be non-differentiable. To do
so, we can adopt proximal gradient methods [25] in each
alternating iteration, which aim to solve optimization
problems of the following form

(4.6) min
u∈H

J (u) +R(u)

where J is convex and differentiable with Lipschitz con-
tinuous gradient, R is a convex, lower semi-continuous
function which is possibly non-differentiable, and H is
some set, typically a Hilbert space. The correspondence
between the objectives (4.5) and (4.6) is clear: the loss
function corresponds to J (u) and R(u) is considered
as the function reflecting any regularizations.

In proximal methods, u minimizes J (u) +R(u) if
and only if 0 ∈ ∂u(J (u) +R(u)), where ∂ is the sub-
differential operator. Given a convex function ψ : H →
R, we can define its proximal operator proxψ : H → H
as proxψ(z) = arg minu∈H ψ(u)+ 1

2‖u−z‖22, which can
be seen as a generalization of a projection [21]. Then,
the Proximal Gradient (PG) method [25] dictates the
following update rule to solve the objective (4.6)

(4.7) uk+1 := proxγR

(
uk − γk∇J (uk)

)
where k denotes the current iteration and γk > 0 is

a step size, which can be found through line search.
In the Supplementary Material 2, we include details
regarding both the implementation and the various
possible choices of losses and regularization functions.

5 Experimental Analysis

Due to space limitations, we include our synthetic data
experiments in the Supplementary Material. In the
following, we address a real-world challenge arising in
the field of chemical genomics: the prediction of drug-
induced and cell-specific gene expression values.

5.1 Background First, we briefly present some
background related to our target application. Differ-
ential gene expression profiling of in vitro drug pertur-
bations refers to the process of measuring the difference
in gene expression of a certain cell culture (e.g., cells

2www.cc.gatech.edu/~iperros3/pdf/sdm17-supp.pdf

from brain affected with cancer) before and after treat-
ing it with a specific drug. A large differential expression
value is indicative of a significant change in the cells’
behavior, meaning that the drug could potentially treat
the corresponding disease. The methodology described
above (known as chemogenomic profiling) has provided
powerful insights towards several important tasks, such
as better understanding of drug mechanisms [32] and
drug repurposing [8]. At the same time, we witness an
expansion of the publicly available chemogenomic data
through the Library of Integrated Cellular Signatures
(LINCS) program [6]: they provide drug-induced and
cell-specific gene expression measurements for roughly
1000 genes, which are known to be maximally predictive
of the expression of the rest of the available genes [6].

As we discussed in Section 1, the data mentioned
above have inherently many missing values, since drugs
are often measured only for a subset of tissues. Thus, a
significant challenge is to estimate the missing expres-
sion values. Another important goal is to enable predic-
tions for new drugs, which are unseen during training.
The experiments illustrating the superiority of Polyadic
Regression in terms of predicting missing values and
expression values for new drugs are provided in Sec-
tions 5.4 and 5.5, respectively.

5.2 Formulation for drug effect prediction
Next, we present our formulation towards drug-induced,
cell-specific gene expression prediction. Consider that
we have n1 drug objects, n2 gene objects and n3 tissue
objects. We used external knowledge for the drug and
gene data domains, but no knowledge is available for
the tissues (partial induction on the domains of drugs
and genes). Thus, x1

i1
∈ Rd1 ,x2

i2
∈ Rd2 are the fea-

ture vectors for drug i1 and gene i2 respectively. We
also incorporate the low-rank assumptions presented in
Section 3.4. Thus, the expression value on gene i2 per-
turbed by drug i1 on tissue i3 is calculated as

fi3(x1
i1 ,x

2
i2) = b+ (w1)>x1

i1 + (w2)>x2
i2

+(x1
i1)>F1C12(F2)>x2

i2

+(x1
i1)>F1C̄13e3

i3 + (x2
i2)>F2C̄23e3

i3

+(C̄ ×1 F1 ×2 F2 ×3 I3)×1 x1
i1 ×2 x2

i2 ×3 e3
i3(5.8)

where F1 ∈ Rd1×m1 , F2 ∈ Rd2×m2 , C12 ∈ Rm1×m2 , C̄13 ∈
Rm1×n3 , C̄23 ∈ Rm2×n3 , C̄ ∈ Rm1×m2×n3 , I3 ∈ Rn3×n3 is
an identity matrix and e3

i3 ∈ Rn3 is the one-hot encoding
of tissue i3. Since our measurements are continuous,
we select the squared loss and solve for the model
parameters by optimizing the following objective

min
w1,w2,F1,F2,

C12,C̄13,C̄23,C̄

1

N

∑
(i1,i2,i3)∈D

(
fi3(x1

i1 ,x
2
i2)− yi1,i2,i3

)2
+λ1

(
Ω(w1) + Ω(w2)

)
+ λ2

(
Ω(F1) + Ω(F2)

)
(5.9)

www.cc.gatech.edu/~iperros3/pdf/sdm17-supp.pdf


where D stands for our dataset, N for the number of
training samples, λ1 is the regularization parameter cor-
responding to the linear feature effects and λ2 is the reg-
ularization parameter targeting polyadic interactions.

5.3 Experiment Setup The version of LINCS data
we used comprise 22, 412 drugs applied to 56 different
tissues for 978 landmark genes. We followed a standard
protocol for data pre-processing, which is described in
the Supplementary Material. We incorporate external
features for the drug and gene data domains. For
drugs, we use the substructure fingerprints denoting the
chemical structure for each drug [26]. For genes, we
use gene-gene similarity features computed using the
GOSemSim [35] package in R. In all our experiments,
we used the 10 tissues containing the most expression
profiles. We also discarded 128 genes for which we did
not have any similarity information.

We employ the holdout method to tune the hyper-
parameters, so the available samples are split to train,
validation and test sets with an approximate ratio of
0.6 : 0.2 : 0.2. The validation set was purely used
to tune the hyper-parameters, which are found using
logarithmic grid search for each one of the methods. The
hyper-parameters achieving the best performance on
the validation set were selected and the corresponding
performance on the test set is reported. We used `2-
norm regularization for all the methods.

We used the Spearman’s ρ (Spearman rank correla-
tion coefficient ranging from−1 to 1) between the vector
of predicted and that of true measurements, as the mea-
sure of accuracy. This is a standard evaluation metric
for gene expression analysis, where correlation metrics
are usually preferred over error measures [1].

Polyadic Regression was set to compete with the
following approaches:
Ridge Regression. A linear regression with L2 reg-
ularization without considering interaction terms. We
used the GLMNet package [10] (Matlab version) imple-
menting Ridge Regression.
Factorization Machines (FMs) [27]. FMs are effi-
ciently exploring all the pairwise feature interactions.
We used the libFM package [28] (C++) implementing
FMs and the Monte Carlo Markov Chain (MCMC) fit-
ting algorithm, which is recommended by the author
as the least prone to hyper-parameter selection. Thus,
other than the rank parameter governing the model
size, we only had to tune the standard deviation of
the initial distribution of parameters. Note that the
regularization-related parameters are automatically de-
termined in MCMC.
Multi-view machines (MVMs) [4]. This is another
prior work which takes into account both linear and
inter-domain interaction terms, and factorizes all of

0 0.5 1 1.5 2

#Parameters ×104

0

0.1

0.2

0.3

0.35

0.4

0.45

0.5

S
p
ea
rm

a
n
’s

ρ

Polyadic Regression

Factorization Machines

Multi-view Machines

Ridge Regression

Figure 2: Predicting missing measurements: Spearman correlation
between the predicted and the true vector of measurements, as we
vary the model size.

them jointly. We used the zen package implementing
Multi-view Machines [37, 4] on top of Apache Spark
(in local mode) using Scala. The fitting algorithm in
this case is Gradient Descent with adaptive gradient
(AdaGrad) [7], which is also recommended by the
authors in [4], so that the algorithm is insensitive to the
choice of the learning rate. We verified the performance
boost using AdaGrad and the insensitivity to the initial
learning rate in our experiments when using it. Thus,
apart from the rank parameter defining the model size,
the only hyper-parameter we had to tune was the λ
value corresponding to `2-norm regularization. Note
that due to the joint factorization of all the parameters
in MVMs, there is a single regularization value to cover
the needs of both the linear and interaction terms.

To adapt to the supervised learning setting em-
ployed by Ridge Regression and FMs, for each sample
{(i1, i2, i3) , yi1,i2,i3}, we create a “concatenated” fea-
ture vector [x1

i1
;x2

i2
; e3
i3

] ∈ Rd1+d2+n3 .
Our method is implemented in Matlab R2015b and

C++ with multi-threading capabilities (OpenMP). We
used the Mex interface to bridge Matlab and C++ im-
plementation. We also employed the Matlab package
apg in [24], implementing an accelerated proximal gra-
dient method.

We set all methods other than Ridge Regression
to run for a maximum of 2, 000 iterations 3. We do
employ early-stopping through cross-validation to avoid
overfitting for all methods.

In terms of hardware, we used a server running
Ubuntu 14.04 with 251 GB of RAM and 16 physical In-
tel(R) Xeon(R) E5-2630 CPU’s with a maximum clock
frequency of 2.40GHz. Each one of the physical cores
can exploit 2 threads with hyper-threading enabled.

5.4 Predicting missing polyadic data In the fol-
lowing, we evaluate the accuracy of the methods under
comparison in predicting missing measurements. Be-

3Ridge regression implementation does not require an iteration
parameter.



sides picking the top-10 tissues containing the most
data, we sub-selected the drugs with measurements
available in all of them. Thus, we have 81 drugs for this
setting. We can consider that the objects under con-
sideration form a dense tensor containing 81× 850× 10
elements denoting the combinations of drugs × genes
× tissues. Those 688, 500 expression values are split
into train, validation and test sets, as explained in Sec-
tion 5.3. Moreover, we cleaned the initial 881 drug
structure features to remove the ones without any vari-
ation among the drugs selected. Thus, for this setting,
we have 497 drug features kept. The number of gene
features is the same as the number of genes since we
construct a gene-gene similarity matrix.

We vary the number of parameters for each method
(apart from Ridge Regression where the number of pa-
rameters is fixed to be the number of features), by tun-
ing the corresponding rank-related parameters. Note
that in Polyadic Regression, we have two parameters
governing the number of parameters (m1 and m2, as
shown in Equation 5.8). We consider that m1 = m2

and vary them in the range {2, 4, 6, 8, 10}. Accordingly,
we vary the rank-related parameters in FMs and MVMs
to reach comparable model sizes.

We present the results of those experiments in Fig-
ure 2. We notice that the output of Ridge Regression
achieves almost zero correlation with the true measure-
ments. This indicates that the linear terms do not have
high predictive towards the predicted outcomes. This
is perfectly reasonable considering for instance a spe-
cific drug feature (e.g., existence of a certain chemical
bond). This feature may target a specific tissue on a
certain group of genes, but intuitively there are no drug
features that have treating capabilities for every condi-
tion. Moreover, the MVMs do not achieve high accuracy
either. This approach comes with an efficient model rep-
resentation which has shown success in recommender
systems applications [4]. However, it assumes that the
linear and interaction terms are factorized jointly; thus,
a single regularization parameter has to cover the needs
of both the linear and interaction terms, even if the for-
mer ones are almost irrelevant towards the predicted
measurements. We believe this is the reason behind
the low accuracy of MVMs for this task. Finally, the
FMs are promising for this task and the correlation
achieved between the output and the measurements’
vector reaches a maximum of 0.44. However, they do
not take into account 3-order interactions, limiting the
model expressiveness for Polyadic Prediction problems.

Polyadic Regression achieves the best performance
for all model sizes, reaching a maximum of 0.5 corre-
lation between the output and the true measurements’
vector. Note that maximum performance on the val-

Method Spearman’s ρ #Parameters

Polyadic Regression 0.23025± 0.0063886 4471
Factorization Machines 0.1252± 0.0083942 4417
Multi-view Machines 0.0669± 0.017242 4425

Ridge Regression 0.0061 1473

Table 1: Predicting measurements for new drugs: for roughly the same
model size, Polyadic Regression achieves 0.1 increase in Spearman cor-
relation between the predicted and the true vector of measurements,
against the best-performing competing method. Results are averaged
over 5 runs and standard deviation is reported.

idation set was in most cases achieved by setting λ1

(in equation 5.9) to be orders of magnitude larger than
λ2, where the former shrinks the linear and the latter
regularizes the interaction effects. Thus, the flexibility
of independent representation (and regularization) be-
tween linear and interaction terms is crucial towards the
target task.

5.5 Predicting polyadic data for new drugs We
also tackle another important challenge in the field of
chemogenomics: predicting expression values for new
drugs, unseen during the training phase. First, we
want to incorporate more drugs than the ones used in
Section 5.4, so that the task becomes more challenging.
Thus, instead of constraining the drugs to have relevant
data in all the 10 tissues, we require that they have
data in at least 2 out of them. This requirement is
fulfilled by 2, 169 drugs, which we further randomly sub-
sample to 500. The number of relevant drug features
(non-zero variation) is 612 in this case. In sum, for the
current task, we consider 500 drugs, 850 genes and 10
tissues. In contrast to Section 5.4, we only have ≈ 44%
of the measurements among the object combinations
available, thus leading to 1, 870, 850 data samples. Since
we are only interested in predictions for new drugs
(predicting for new genes is not a practical use case and
we have no external knowledge for tissues), we follow
the holdout method by constraining though that the the
train, validation and test sets have no common drugs.

We evaluate the robustness of the competing ap-
proaches, thus we fixed Polyadic Regression, FMs and
MVMs to roughly the same model size and run the ex-
periments 5 times, reporting average performance and
standard deviation. We provide the results in Table 1.
Polyadic Regression achieves 0.1 increase in correlation
between the predicted and the true vector of measure-
ments, against the best-performing competing method.
Moreover, we remark its robustness in terms of different
initialization of parameters.

5.6 Scalability We assess the scalability properties
of the methods under comparison w.r.t. varying sizes
of training data and input features. To do so, we used
the data described in Section 5.5. Regarding the scal-
ability for increasing number of training examples, we
constructed smaller sets of data, by including random



0 2 4 6 8 10 12

Training data size ×105

0

5

10

15

20

25

30

35

40

A
v
er
a
g
e
ti
m
e
p
er

ep
o
ch

(s
ec
o
n
d
s)

Polyadic Regression
Factorization Machines
Multi-view Machines

(a) Training Data Size

0 500 1000 1500

Total number of features

0

5

10

15

20

25

30

35

40

A
v
er
a
g
e
ti
m
e
p
er

ep
o
ch

(s
ec
o
n
d
s)

Polyadic Regression
Factorization Machines
Multi-view Machines

(b) Input Feature Dimension

Figure 3: The scalability in terms of training time per epoch with
respect to increasing training data size and input feature dimension.

subsets of 1/8, 1/4, 1/2 of the total samples. As concerns
the scalability for increasing number of input features,
we fixed the number of training examples and removed
an equal number of features from the drug and gene do-
mains, so as to reach the desired total feature number.
We measured the training time per epoch, as an average
over 100 epochs.

Note that the GLMNet package implementing
Ridge Regression uses a cyclical coordinate descent al-
gorithm, updating a specific parameter in each iteration.
This is in contrast to the rest of the methods which up-
date the whole space of parameters; thus, a comparison
in terms of time per epoch with Ridge Regression would
not be meaningful and is not included. However, we em-
pirically remark that it is the fastest method, which is
reasonable considering it only takes into account linear
feature effects.

We provide the results in Figures 3(a) and 3(b).
We remark that all methods share similar (near-linear)
scalability properties. We would like to emphasize that
a direct time comparison between different methods
would not be fair, since they are implemented using
different setup (single-threaded, multi-threaded).

6 Related Work

Polyadic Regression essentially tackles the general case
of the Dyadic Prediction problem which is studied in [17,
20, 15, 22]. The corresponding approaches though,
only predict dyadic and cannot generalize to predict-
ing polyadic data. Other works that also model only
dyadic interactions are the Sparse Factorization Ma-
chine [34] and the Conditional High-Order Boltzmann
Machine [14].

Multi-view Machines [4] (MVMs) is a recently pro-
posed model, exhibiting success in recommender sys-
tems’ applications. MVMs capture both linear and
higher-order interactions across features of different
data domains, and jointly factorize all of them by a
CP tensor decomposition [12]. On one hand, this deci-
sion limits the number of parameters to learn. However,
it restricts to a target model where the linear and in-
teraction terms are composed from the same low-rank

factors, and have to share the same regularization. This
may be a limiting factor when the interaction and lin-
ear terms have very different contributions towards the
predicted measurements. Our model is more flexible,
allowing for a different treatment among the linear and
interaction terms.

As concerns other lines of work, the notion of multi-
view learning, as it has been hitherto used in the liter-
ature [33], does not tackle the challenges we introduced
in Section 1. It is limited to models either accepting
only two inputs [18] or learning correlations at the view-
level (as in multiple-kernel learning [11]) and not be-
tween features of different representations, thus limiting
the model’s expressiveness and interpretation potential.
On a different note, while tensor regression methods
(e.g., [2]) predict polyadic data by generally exploring
only the highest order of possible interactions, they can-
not provide predictions for new objects (e.g., new drugs
in our target application), in the post-training phase.

7 Conclusions

We proposed Polyadic Regression, a general framework
predicting measurements associated with multiple ob-
jects. Our framework enables predictions for new ob-
jects, unseen during training, thus tackling the so-called
cold-start problem. Our model is expressive for address-
ing general Polyadic Prediction problems, by exploring
all the high-order interactions across different data do-
mains, in an efficient, factorized, way. We evaluate our
approach with real chemogenomics data, demonstrating
its superior accuracy over the prior art. As future work,
we plan to apply Polyadic Regression to other fields and
further improve its scalability.

Acknowledgments

This work was supported by NSF grants under number
IIS-1418511 and CCF-1533768, research partnership be-
tween Children’s Healthcare of Atlanta and the Geor-
gia Institute of Technology, Google Faculty Award and
UCB. Portions of this research were supported by De-
fense Medical Research Program Grant DM130137. The
opinions of the authors do not necessarily reflect those
of the United States Navy. PB Walker is a military
service member. This work was prepared as part of
their official duties. Title 17 U.S.C. 101 defines U.S.
Government work as a work prepared by a military ser-
vice member or employee of the U.S. Government as
part of that person’s official duties. The work of Fei
Wang is partially supported by NSF grant under num-
ber IIS-1650723. The first author would like to thank
Mohammad Taha Bahadori for his valuable feedback
which improved the paper’s clarity.



References

[1] David B Allison et al. DNA microarrays and related ge-

nomics techniques: design, analysis, and interpretation of
experiments. CRC Press, 2005.

[2] Mohammad Taha Bahadori et al. “Fast multivariate spatio-

temporal analysis via low rank tensor learning”. In: NIPS.
2014, pp. 3491–3499.

[3] Léon Bottou et al. Optimization Methods for Large-Scale

Machine Learning. Tech. rep. arXiv:1606.04838, 2016. url:
http://leon.bottou.org/papers/tr-optml-2016.

[4] Bokai Cao et al. “Multi-view Machines”. In: WSDM 2016,

pp. 427–436.

[5] Chris Ding et al. “Orthogonal nonnegative matrix tri-

factorizations for clustering”. In: KDD 2006, pp. 126–135.

[6] Qiaonan Duan et al. “LINCS Canvas Browser: interactive
web app to query, browse and interrogate LINCS L1000

gene expression signatures”. In: Nucleic acids research

42.W1 (2014), W449–W460.

[7] John Duchi et al. “Adaptive subgradient methods for

online learning and stochastic optimization”. In: Journal of

Machine Learning Research 12.Jul (2011), pp. 2121–2159.

[8] Joel T Dudley et al. “Exploiting drug–disease relationships

for computational drug repositioning”. In: Briefings in

bioinformatics 12.4 (2011), pp. 303–311.

[9] Theodoros Evgeniou and Massimiliano Pontil. “Regularized

multi–task learning”. In: KDD. ACM. 2004, pp. 109–117.

[10] Jerome Friedman et al. “Regularization Paths for Gener-
alized Linear Models via Coordinate Descent”. In: Journal

of Statistical Software 33.1 (2010), pp. 1–22. url: http:

//www.jstatsoft.org/v33/i01/.

[11] Mehmet Gönen and Ethem Alpaydın. “Multiple kernel

learning algorithms”. In: Journal of Machine Learning

Research 12.Jul (2011), pp. 2211–2268.

[12] Richard A Harshman. “Foundations of the PARAFAC

procedure: Models and conditions for an “explanatory”

multi-modal factor analysis”. In: UCLA Working Papers
in Phonetics (1970).

[13] Thomas Hofmann et al. “Learning from dyadic data”. In:

Advances in neural information processing systems (1999),
pp. 466–472.

[14] Yan Huang et al. “Conditional High-Order Boltzmann Ma-

chine: A Supervised Learning Model for Relation Learn-
ing”. In: ICCV. 2015, pp. 4265–4273.

[15] Prateek Jain and Inderjit S Dhillon. “Provable inductive

matrix completion”. In: arXiv preprint arXiv:1306.0626
(2013).

[16] Shuiwang Ji and Jieping Ye. “An accelerated gradient
method for trace norm minimization”. In: ICML. ACM.
2009, pp. 457–464.

[17] Bo Jin et al. “Multitask Dyadic Prediction and Its Applica-
tion in Prediction of Adverse Drug-Drug Interaction”. In:
AAAI 2017 (to appear).

[18] Sham M Kakade and Dean P Foster. “Multi-view regres-

sion via canonical correlation analysis”. In: International
Conference on Computational Learning Theory. Springer.

2007, pp. 82–96.

[19] Tamara G Kolda and Brett W Bader. “Tensor decompo-

sitions and applications”. In: SIAM review 51.3 (2009),

pp. 455–500.

[20] Aditya Krishna Menon and Charles Elkan. “A log-linear

model with latent features for dyadic prediction”. In:

ICDM. IEEE. 2010, pp. 364–373.

[21] Jean-Jacques Moreau. “Fonctions convexes duales et points

proximaux dans un espace hilbertien”. In: CR Acad. Sci.

Paris Sér. A Math 255 (1962), pp. 2897–2899.

[22] Nagarajan Natarajan and Inderjit S Dhillon. “Inductive

matrix completion for predicting gene–disease associa-
tions”. In: Bioinformatics 30.12 (2014), pp. i60–i68.

[23] Kerry A O’Connor and Bryan L Roth. “Finding new tricks

for old drugs: an efficient route for public-sector drug
discovery”. In: Nature reviews Drug discovery 4.12 (2005),

pp. 1005–1014.

[24] Brendan O’Donoghue. apg. https://github.com/bodono/
apg. 2016.

[25] Neal Parikh and Stephen Boyd. “Proximal algorithms”.

In: Foundations and Trends in optimization 1.3 (2013),
pp. 123–231.

[26] PubChem Substructure Fingerprints. https://pubchem.

ncbi.nlm.nih.gov/. Accessed: 2016-09-19.

[27] Steffen Rendle. “Factorization machines”. In: ICDM. IEEE.

2010, pp. 995–1000.

[28] Steffen Rendle. “Factorization machines with libfm”. In:
ACM Transactions on Intelligent Systems and Technology

(TIST) 3.3 (2012), p. 57.

[29] Mohit Sharma et al. “Feature-based factorized bilinear sim-
ilarity model for cold-start top-n item recommendation”.

In: SDM. Vol. 15. SIAM. 2015, pp. 190–198.

[30] Marina Sirota, Joel T Dudley, et al. “Discovery and preclin-
ical validation of drug indications using compendia of public

gene expression data”. In: Science Translational Medicine

3.96 (2011), 96ra77–96ra77.

[31] Ledyard R Tucker. “Some mathematical notes on three-

mode factor analysis”. In: Psychometrika 31.3 (1966),

pp. 279–311.

[32] Guo Wei, David Twomey, et al. “Gene expression-based

chemical genomics identifies rapamycin as a modulator of
MCL1 and glucocorticoid resistance”. In: Cancer cell 10.4
(2006), pp. 331–342.

[33] Chang Xu et al. “A survey on multi-view learning”. In:
arXiv preprint arXiv:1304.5634 (2013).

[34] Jianpeng Xu et al. “Synergies that Matter: Efficient In-

teraction Selection via Sparse Factorization Machine”. In:

SDM 2016, pp. 108–116.

[35] Guangchuang Yu, Fei Li, et al. “GOSemSim: an R package
for measuring semantic similarity among GO terms and

gene products”. In: Bioinformatics 26.7 (2010), pp. 976–
978.

[36] Min-Ling Zhang and Zhi-Hua Zhou. “A review on multi-

label learning algorithms”. In: Knowledge and Data Engi-
neering, IEEE Transactions on 26.8 (2014), pp. 1819–1837.

[37] Bo Zhao et al. Zen. https://github.com/cloudml/zen.
2016.

http://leon.bottou.org/papers/tr-optml-2016
http://www.jstatsoft.org/v33/i01/
http://www.jstatsoft.org/v33/i01/
https://github.com/bodono/apg
https://github.com/bodono/apg
https://pubchem.ncbi.nlm.nih.gov/
https://pubchem.ncbi.nlm.nih.gov/
https://github.com/cloudml/zen

	Introduction
	Background
	Problem & Model Formulation
	Problem Definition
	Core Model
	Partial Induction
	Factorizing Polyadic Interactions

	Algorithm
	Objective Formulation
	Objective minimization

	Experimental Analysis
	Background
	Formulation for drug effect prediction
	Experiment Setup
	Predicting missing polyadic data
	Predicting polyadic data for new drugs
	Scalability

	Related Work
	Conclusions

